User friendly processing of sediment CT data:

Software and application in high resolution non-destructive sediment core data sets

Brendan Reilly, Joseph Stoner College of Earth, Ocean and Atmospheric Sciences, Oregon State University

Jason Wiest College of Veterinary Medicine, Oregon State University

Medical CT Scanner at OSU College of Veterinary Medicine

Medical CT Scanner at OSU College of Veterinary Medicine

Medical CT Scanner at OSU College of Veterinary Medicine

Medical CT Scanner at OSU College of Veterinary Medicine

Why CT Scans?

- 3-D Volumes
- Quantitative HU scale
- Up to 0.5 mm resolution

HU values are relative to the attenuation coefficient of water Air ~= -1000 Water = 0 Calcite ~= 2500

 $\begin{aligned} HU &= \left(\mu / \mu_w - 1 \right) \times 1000 \\ HU &= Hounsfield Unit \\ \mu &= attenuation coefficient of sediment \\ \mu_w &= attenuation coefficient of water \end{aligned}$

Comparison with GRA density

CT Scans are already demonstrated as useful in paleoclimate studies

St. Lawrence Estuary

Davies et al., 2011, Paleoceanography

CT Scans can facilitate identification of disturbances

Motivation

Standardize CT Processing:

- Utilize entire 3-D volume and sets of DICOM files
- Interactive and simple tool
- Fast
- Direct comparison of large sediment core suites
- Preserves quantitative information (HU Scale)

Robustness to Normal Coring Imperfections

- Deformation
- Bowing
- Gas Expansion
- Gaps

Graphical User Interface

Graphical User Interface

Input Parameters

Graphical User Interface

Processing Parameters

Graphical User Interface

Select Directory Containing DICOM (Digital Imaging and Communications in Medicine) Files Choose Axial or Coronal Plane

Graphical User Interface

Load Data

Graphical User Interface

Generate Image and Random Sampling of HU Values (Default = 5,000)

Data Processing

Image

Random HU Value Sampling

Graphical User Interface

Process CT Data

Graphical User Interface

Processing Parameters to Adjust

Graphical User Interface

Image

Data Processing

Graphical User Interface

HU Down Core Profile

Data Processing

Graphical User Interface

Standard Deviation

Data Processing

Graphical User Interface

Pixels Isolated and Used

Data Processing

Graphical User Interface

User defines regions to mask

Data Processing

Graphical User Interface

If core is run in multiple sections, load in all sections

Graphical User Interface

Stitch sections together to make composite core

Data Processing

Software makes a best guess

User refines the composite

Graphical User Interface

View and export the results

Data Processing

Comma delimited '*.dpro' Unscaled '*.tiff'

Graphical User Interface

Batch process image files using SedCTimage (add on package)

Graphical User Interface

Student Version> : SedCTimage												-	>
Select *.dpro.tiff Directory								_				□400	
R-813-D1.dpro.tiff							15.8	100.3					
R-B13-D3.dpro.tiff R-E13-D1.dpro.tiff	1				~	12		100		124	100	350	
R-E13-D2.dpro.tiff R-E13-D3.dpro.tiff R-G13-D1.dpro.tiff				1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1						A. C. C.			
R-H13-D1.dpro.tiff R-H3-D1.dpro.tiff				1888 1921			ALC: NO						
R-J13-D1.dpro.tiff R-J13-D2.dpro.tiff R-J13-D3.dpro.tiff	100						1			1		- 300	
						the							
J					開始			1				250	
Image Levels						A REAL	The second	No.		14			
Process O False Color						100		-		1		200	
Mean: 301.8941		in الم				100	and a		E.				
3. 064 233.4431		1											
400 Upper Range		200		and the second	100 A		1	in the			*	150	
100 Lower Range			_			Sec.		1					
Range: 100 - 400						_		-				100	
Save GS Save FC													

Scale all cores in suite to same, quantitative grayscale

Graphical User Interface

... or false color

- Re-cored in 2013 (UWITEC, Livingston, Surface)
- Brown, faintly laminated mud with tephra layers
- Recovered in (at least) triplicate entire Holocene (Basal date ~ 13,000 cal yrs BP)
- Classic paleomagnetic site (Verosub et al., 1986, JGR)

Learn about the Fish Lake, Oregon paleomagnetic record

J. Stoner, M. Abbott, L. Zeigler, et al. **The Holocene history of the North American flux lobe: New constraints from Fish Lake, Harney County, Oregon** in Advances in Environmental Magnetism, Bio-Geomagnetism, and High Resolution Paleomagnetism Studies Thursday, 11:20 a.m. Moscone South – 300

U-channel deconvolution of Oda & Xuan, 2014, G³

Sawtooth Lake, Ellesmere Island

- Re-cored in 2012 (UWITEC)
- High sedimentation rates (~150 cm/ka)
- Clastic varves
- Varved based chronology back to ~ 3ka
- Paleomagnetic record could provide valuable insight to the high latitude geomagnetic field
- More info: (Francus et al., 2008, J Paleolimnol)

Christensen 2011

Sawtooth Lake, Ellesemere Island

Other Capabilities, IRD counts, scans of multiple u-channels

2mm Slice	1mm Slice 1	1mm Slice 2	2mm Silce Int. 1+2	
2mm Slice	1mm Slice 1	1mm Slice 2	2mm Siloe Int 1+2	
		2		
U1417B-11F	1-3	U1417B-13H-3		

Comparison of cores with distance from grounding line of the Petermann Glacier, Greenland

Increasing Petermann grounding line sourced sediment

Less Evidence for Bioturbation

User friendly processing of sediment CT data:

Software and application in high resolution non-destructive sediment core data sets

breilly@coas.oregonstate.edu Student Version > · SedC Processing Analysis Process DICON DICOM Section Use-Select Select DICOM Folder Section 1 O Section 2 No Path Selected Section 3 O Section 4 College of Earth, Ocean, and Atmospheric Sciences Sagittal/Coronal Compile Sections Axial O Stitch 1 & 2 Parameters Sed-CT O Stitch 2 & 3 5000 Pixel Sample O Stitch 3 & 4 Max Slope Stitch Trim Value 500 Move Top Section Δ 0 Min Pixels **Oregon State** << >> Top Mask v Bottom Mask 0 View Composite College of Earth, Ocean, and Atmospheric Sciences Load DICOM File Create Outputs No Data Loaded Process CT Data Clear All